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Cutoff Frequency of a Homogeneous Optical
Fiber with Arbitrary Cross Section

CHING-CHUAN SU

Abstract —Through an original derivation of the boundary conditions
right at cutoff, the method of circular-harmonic expansion proposed by
Goell to calculate propagation constants is extended to treat cutoff fre-
quencies of homogeneous optical fibers with arbitrary cross sections in the
rigorous vector form. This circular-harmonic method is also extended to
the scalar form, from which the cutoff frequency can be obtained in a
simpler way. Numerical results of cutoff frequencies of both the vector and
the scalar forms are presented.

I. INTRODUCTION

O CALCULATE the propagation constant of a homo-

geneous optical fiber with arbitrary cross section,
several numerical methods have been proposed, such as the
method of circular-harmonic expansion [1], [2], the ex-
tended boundary condition [3], {4], the generalized tele-
graphist’s equation [5], and the method of surface integral
equations [6], whereas, except for [6], few papers have
discussed the calculation of cutoff frequencies of noncir-
cular dielectric waveguides. Based on the scalar form of the
extended boundary condition, Eyges et al. [3] have pre-
sented some cutoff frequency data of such a structure, but
no methods of extracting them were mentioned.

In this investigation, the boundary field-matching condi-
tions right at cutoff are originally derived; thereupon, the
aforementioned method of circular-harmonic expansion
developed by Goell is extended to treat the cutoff frequen-
cies of homogeneous optical fibers with arbitrary cross
sections in the rigorous vector form. We also extend this
circular-harmonic method to the scalar form, from which
the cutoff frequency can be obtained in a simpler way, as
discussed in Section II. Vectorial and scalar results of
cutoff frequencies of elliptical and rectangular waveguldes
are presented in Section III.

II. FORMULATION

Consider a homogeneous dielectric cylinder of arbitrary
cross section cladded by a homogeneous medium. Along
such a structure, a time-harmonic electromagnetic field of
angular frequency w propagates with a propagation con-
stant B in the axial (z) direction.
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A. Vector Form

The propagation problem can be solved in the rigorous
vector form via the axial components of the fields E, and
H,, which are real quantities for guided modes and can be
represented respectively in summations of the Bessel func-
tions (or modified Bessel functions of the second kind)
multiplied by angular phase factors as

E(w)=Re{mi;oa:,.c;,xr)e-fm} o)

and
o]
H(r.¢)= Re{ > jb,i,G,ﬁ,(r)e‘fm¢} (2)
m=0
where E=E,, H= (wpuo/B)H,, s =i (denoting the inter-

tor region) or e (denoting the exterior region),
GL(ry=J,(u), Go(r) =K, (w), u=(ke,— B r, w=
(B*—= k¥ ) %r, ky denotes the free-space propagation
constant, and a,,, a;,, b}, and b;, are unknown complex
coefficients. Note that a pure imaginary number j is intro-
duced before bZ, in (2) to simplify the following discussion.
Once the axial components are obtained, other components
can be deduced from them directly. Among the transverse
components, those directed counterclockwise along the pe-
riphery of the cylinder can be given by
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Fig. 1. The cross section of a homogeneous arbitranly-shaped optical
fiber.
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where G = dJ, (u)/dr, GE = dK, (w)/dr, and 8/9n and
d/0d!] denote the derivatives in the 7 and [ directions,
respectively. Explicitly

0/0l=—sin0d/dr+(cos@/r)d/d¢

(4)

+ b,

and
d/3n=cosbd/adr+(sinb/r)d/d¢

where @ denotes the angle between r and 7 (see Fig. 1).

If one terminates the infinite summations after M terms
and forces the four kinds of tangential fields of the two
regions to be continuous at N ( = 2M) node points distrib-
uted around the periphery, one arrives at 4N simultaneous
real equations with unknown variables being the real and
the imaginary parts of a’,, b.,, af, and bf. (Actually, due
to the term of sin(m¢) with m = 0, the imaginary parts of
aj, and the real parts of b] are deleted and, accordingly,
one of the node points is deleted.) Then, the propagation
constants of guided modes can be determined by searching
the roots of the determinant of the resultant matrix.

However, at the cutoff condition (¢( =¢,— B*/k3) — 0),
special consideration should be taken for the exterior trans-
verse fields since the vanishing denominators occur in (3)
and (4) and the expansion functions K,,(w) are singular
themselves. The singularity of X, at cutoff can be removed
by retaining only their relative magnitudes (for each order
of K,) among the node points; that is, K, (w) is re-
cognized as r~" at cutoff.
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The singularity due to the vanishing denominators can
be removed by noticing the behavior of the modified Bessel
functions with vanishing arguments. As g approaches zero
from a negative value

Ki(w)lyno==1/r (5a)

and
K/ (w) m
=——+g¢grQ,, form=>1 (5b)
K, (w)| ., r
where
Q,=—kiln(ymw/2), form=1
=k2/2(m=-1), form>1

and vyz(=1781...) denotes Euler’s constant whose
numerical value will not be encountered in actual calcula-
tion. From (3)-(5), one can conclude the following: For
the transverse fields remaining finite in the exterior region,
it requires that

be=at +qf,,  form>0 (6)

and that a§ and b§ should vanish to the first order of g,
where .f,, are unknown complex quantities. Further, it is
noted that the quantity of €,/(8/k,)* in (4) can be
replaced by (1+g/¢,), as ¢ approaches zero. Then we
obtain the representations of the exterior transverse fields
along the peripheral direction at cutoff as

— jk§
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S m m
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m=1 ¥ re,

(8)
Using (7) and (8) to represent E, and H, in the exterior
region and applying the relation of b7, = a¢, (letting ¢ =0
in (6)) to (2), one arrives at 4N simultaneous real equations
with unknown variables being the real and the imaginary
parts of a, b, a¢, and f, (replacing notationally b§
with f;), after the same point-matching procedure. Note
that since Q; becomes infinite and @i becomes zero
accordingly, the quantity of 4{Q; is undetermined. In view
of this, we replace the to-be-solved unknown a; with a{Q,.
Similarly, we replace the unknowns af and f, with a§/q
and f,/q, respectively. Thereafter, the cutoff frequencies
of guided modes are determined by searching the values of
V' which render the determinant of the resultant matrix
vanishing, where V(=ky[A(¢,—¢,)/m]"/?) denotes the
normalized frequency and A denotes the cross-sectional
area. Through such a normalized quantity, cutoff frequen-
cies of guided modes are determined by knowing the ratio
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¢, between ¢; and €,(¢, =¢,/€,), not necessarily by their
respective values. -

B. Scalar Form

In the case of ¢, —1, the transverse fields and their
gradients in any direction are continuous everywhere. Con-
sequently, the propagation problem can be solved via a
transverse field F in any (but fixed) direction of rectangu-
lar coordinates. This field and its derivative can be repre-
sented respectively by

w ,
F(r,¢)= Re{ )y afnG,f,e_""“’} (9)

m=0

and

dF(r,¢) i |G
— s s ,—jmd
7 Re{ > asGie™ ( o )} (10)

m=0 m

where the notations a,, G2, and G:, are defined as before.
Similarly, by terminating the infinite summations after M
terms and forcing F and dF/dr to be continuous at
N(=2M) points distributed around the periphery, one
obtains 2N simultaneous real equations with unknown
variables being the real and the imaginary parts of a}, and
at,. The resultant matrix can be used to find propagation
constants as well as cutoff frequencies of guided modes. In
the treatment of the cutoff frequency, the quantity of
K, /K, is taken as —m/r (letting ¢=0 in (5)) and,
again, only the relative magnitudes of K, (w) are retained.

C.  Symmetry

If the cross section of the guiding structure possesses
symmetry about some axis, there will be symmetry or
antisymmetry in the corresponding field patterns. It can be
shown that if F is symmetric about that axis, H will be
antisymmetric, and vice versa. Due to the opposite symme-
try between E and H, we refer to the symmetry types
hereafter with respect to E. If E is symmetric (antisymmet-
ric) about the x axis, the imaginary (real) parts of all the
unknown coefficients (a},, b}, and f,) are zero and the
corresponding guided modes are referred to the symmetric
(antisymmetric) modes hereafter. If the symmetric mode is
further symmetric (antisymmetric) about the y axis or the
antisymmetric mode is antisymmetric (symmetric) about
the y axis, the summation index m in (1)-(4), (7), and (8)
will run on even (odd) numbers and the corresponding
modes are referred to the even (odd) modes. By exploiting
the symmetry properties, the number of unknown coeffi-
cients and the number of node points will be reduced. In
cases of two-fold symmetry, such as in elliptical or rectan-
gular waveguides, it suffices to match the fields in one
quandrant of the periphery. In the scalar form, the al-
gorithm for symmetry is the same as that of the vector
form. However, the physical interpretation is different,
since the scalar form is formulated via a transverse field. It
can be shown that, for a structure with two-fold symmetry,
each scalar even (odd) mode is composed of two vectorial
odd (even) modes, one symmetric and one antisymmetric.
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To avoid confusion, we refer to the scalar symmetry type
with respect to the corresponding symmetry in the vector
form.
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In the following calculation, we consider the elliptical
and the rectangular waveguides which possess two-fold
symmetry, and whose boundaries can be described by a
superellipse [2] as

(rcos<p)2L (rsincp 2L
A7

PROCEDURE AND RESULT

C C 1 (11)
where y denotes the aspect ratio such that 2C and 2yC are,
respectively, the lengths of the minor and the major axes,
L =1 corresponds to an ellipse, and L = oo corresponds to
a rectangle.

In our calculation, it is found that the calculated results
depend on how the node points are chosen, especially when
the aspect ratio becomes large. The results presented here
correspond to those node points equiangularly distributed
around the periphery; namely, the azimuthal angle of node
point I is given by

P a I—0.5
o ( )—2 Y

I1=1,2---N. (12)
For the even modes, where the summations include the
term of sin(mo) with m = 0, two equations (one in (1) or
(2) and the other in (3) or (4), depending on the modes
being symmetric or antisymmetric) corresponding to the
point of I =1 were deleted.

In general, one has to solve a 4N X4N matrix for the
vector form just as was done in [1]. However, some of the
computation can be saved if one first expresses explicitly
a', and b}, in terms of af, from (1) and (2), respectively (by
solving associated N X N matrices), and then substitutes
these explicit relations in (3) and (4). Thereafter, one
arrives at a 2N X2N matrix equation with unknowns
being a¢, and f,,. It can be shown that the total computa-
tion effort is about one-half that of solving a 4N X4N
matrix equation directly. This time-saving procedure holds
for the calculation of propagation constants.

The calculated cutoff frequencies of both the vector and
the scalar forms are shown in Tables I and II for the
elliptical and rectangular waveguides, respectively, where
the modes designated by SE (AE) correspond to the sym-
metric (antisymmetric) even modes and those by SO (AO)
correspond to the symmetric (antisymmetric) odd modes.
The scalar data from [3] are also listed for comparison. It is
found that most of their data are higher than ours. By
further checking their data of circular waveguides, where
exact solutions are available, we conclude that the cutoff
data in [3] are not right at cutoff but just near it. Compar-
ing Tables I and IT, it is found that, for the modes shown,
the cutoff frequencies of the elliptical waveguides are higher
than those of the rectangular waveguides with the same
aspect ratio and cross-sectional area.

Previously, it has been found that the elliptical [7] and
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TABLE1
NORMALIZED CUTOFF FREQUENCY OF AN ELLIPTICAL WAVEGUIDE
= - r
€ =225 €, = 1.0404 €1
MODE
y=1.5 =2 y=1.5 7=2 7=1.5 =2
SE 2.2%94 2.241 2.201 2.132 *
aEL 2389 2.399  2.206 2.139 2193 (2.23) 2.084 (2.13)
SE 2,976 3.233  2.696 2.954
AEZ  2.896 3.090  2.692 2.947 -686 (2.77)  2.935 (2.98)
SO 3.408 3.127 3.355 3.126
ro? 3.483  3.300 3.360 3.135 -351 (3.42)  3.104 (3.20)
50 4,183 4.379 3,912 4.053
207  4.043 4.116  3.905 4.042 -898 (3.89)  3.976 (4.09)
0 4.576 5.014  4.459 4.984
S04 ETC D00 1RR) dlans 4-457 (4.54) 4.982 (5.11)
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*The parenthesized data in

Tables I and II are taken from [3];

however, due to the different defimtions of normalized frequency, they
are multiplied by a factor of 77‘/)_/ to conform our definition pertaining to

cross-sectional area.

TABLEII
NORMALIZED CUTOFF FREQUENCY OF A RECTANGULAR WAVEGUIDE
Er = 2.25 (% = 1,0404 G;——»1

MODE

y=1  7=1.5 7=2 7=1  ¥=1.5 V=2 y=1  7=1.5 7=2

[vector form]

SE 2.097 2.026 1.988  2.143 1.953 1.857 1.849
AEL 20176 2.094 2.096  2.146 1.953 1.s60  2-137 1.929 g4 (1.87)
SE 2,592 2.754 2.987  2.173 2.443 2.715 2.704
AEZ  2.327 2.519 2.745  2.161 2.436 2.705  2-P37 2.408 5754, (2.67)
0 3.286 3.032 2.838  3.237 3.044 2.838 2.836
202 3.286 3.098 2.917  3.237 3.045 2.841 3.196 3.011 77834 (2.84)
S0 3.425 3.648 3.855 3.366 3.318 3.487 3.471
a0l 3425 3.422 3594 3.366 3.311 3.477 0325 3.220 3045 (3.42)
50 3.925 4.219 4.702  3.682 4.157 4.705 4.706
RO,  3.925 4.330 4.82) 3.682 4.160 4.710  2-671 4.128 4754 (4.80)

the rectangular [1] waveguides possess two fundamental
modes which are never cutoff; indeed, we find that of the
two lowest modes (the SO, and AO, modes), the cutoff
frequencies cannot be found, namely, their cutoff values
are both zero. The functional behavior of the cutoff fre-
quencies of elliptical waveguides as the aspect ratio y and
the permittivity ratio €, are varying as shown in Figs. 2 and
3, respectively. It is found that, except for the TE and TM
modes, each mode of a circular waveguide is split into two
different modes (one symmetric and one antisymmetric) as
the cross section becomes flatter. As to those elliptical
modes evolving from the circular TE or TM modes, since
their field patterns do not possess both symmetry and
antisymmetry (about the x axis), no such splitting is ob-
served; however, the degeneracy in the cutoff frequencies
of the circular TE and TM modes is removed in an
elliptical waveguide. Note that in the special case of the
circular waveguide, the solutions of the present method
correspond to the HE, ; modes with azimuthal mode num-
ber m >1. For other circular modes, the cutoff frequencies
are determined in another way [8] (which is specific to the
circular waveguide), and one needs finer searching steps to
locate the cutoff frequencies of elliptical modes which
evolve from such circular modes, when v is close to 1.
From Fig. 2, one can also find that some of the cutoff

frequencies become higher and others become lower as the
cross section becomes flatter. Yeh conjectured [7] that the
cutoff frequencies of all modes (except the fundamental
modes) become higher for a flatter (but same area) ellipti-
cal waveguide. Apparently, his early conjecture is not
correct. However, his argument may be applied to wave-
guides of very large aspect ratios, in which case the por-
tions near the ends of the major axes are expected to
contribute little to the guiding mechanism. Fig. 3 illustrates
that the splitting due to a nonunit aspect ratio increases as
¢, becomes larger, and vanishes again as €, approaches
unity. Note that in the limit of ¢, =1, the vectorial and
scalar solutions do not agree very well, which is ascribed to
the errors of calculation. For a smaller vy, this disagreement
is seen to be smaller. The vanishing splitting as ¢, —1 also
exists in the propagation constants above cutoff; this ex-
plains why Eyges er al. [3] failed to find two fundamental
modes by employing a scalar formulation.

In the above calculation, we choose N =38 and use a
double precision. The aspect ratios are confined within 2.5;
for larger aspect ratios, N should be increased to obtain
satisfactory results. However, for such large aspect ratios,
the increase of N is found to bring forth numerical insta-
bility. This instability seems due to the extraneous large
variation of the numerical values of the Bessel or modified
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Fig. 2. Relations of normalized cutoff frequency ¥, versus aspect ratio
v of an elliptical waveguide with (a) ¢, =225 or (b) 1.0404. The
discrepancies between the cutoff frequencies of symmetric and antisym-
metric modes are too small to be shown in the drawing of (b).

Bessél functions among the node points when y and N
become large simultaneously.

IV. CONCLUSION

In this investigation, the boundary field-matching condi- .

tions right at cutoff are originally derived; thereupon, the
vectorial method of circular-harmonic expansion is ex-
tended to treat the cutoff frequencies of homogeneous
optical fibers with arbitrary cross sections. This circular-
harmonic method is also extended to the scalar form,
where the cutoff frequencies can be obtained in a simpler
way. ’
- From the calculated results, it is found that, except for
the fundamental mode and the TE and TM modes, each
mode of circular waveguide is split into two modes with
different cutoff frequencies as the waveguide becomes
* elliptical. The dependences of cutoff frequency on the
. cross-sectional geometry and the permittivity ratio are il-
lustrated. ‘
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Fig. 3. Relations of normalized cutoff frequency V, versus permittivity
ratio €, for a symmetric and a corresponding antisymmetric modes of
an elliptical waveguide.
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