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Cutoff Frequency of a Homogeneous Optical
Fiber with Arbitrary Cross Section

CHING-CHUAN SU

Abstract —Through an originaf derivation of the boundary conditions

right at cutoff, the method of circular-harmonic expansion proposed by

Coell to cafcnlate propagation constants is extended to treat cutoff fre-

quencies of homogeneous opticaf fibers with arbitrary cross sections in the

rigorous vector form. This circular-harmonic method is also extended to

the scafar form, from which the cutoff frequency can be obtained in a

simpler way. Numericat results of cutoff frequencies of both the vector and

the scalar forms are presented.

I. INTRODUCTION

T O CALCULATE the propagation constant of a homo-

geneous optical fiber with arbitrary cross section,

several numerical methods have been proposed, such as the

method of circular-harmonic expansion [1], [2], the ex-

tended boundary condition [3], [4], the generalized tele-

graphist’s equation [5], and the method of surface integral

equations [6], whereas, except for [6], few papers have

discussed the calculation of cutoff frequencies of noncir-

cular dielectric waveguides. Based on the scalar form of the

extended boundary condition, Eyges et al. [3] have pre-

sented some cutoff frequency data of such a structure, but

no methods of extracting them were mentioned.

In this investigation, the boundary field-matching condi-

tions right at cutoff are originally derived; thereupon, the

aforementioned method of circular-harmonic expansion

developed by Goell is extended to treat the cutoff frequen-

cies of homogeneous optical fibers with arbitrary cross

sections in the rigorous vector form. We also extend this

circular-harmonic method to the scalar form, from which

the cutoff frequency can be obtained in a simpler way, as

discussed in Section II. Vectorial and scalar results of

cutoff frequencies of elliptical and rectangular waveguides

are presented in Section III.

II. FOWULATION

Consider a homogeneous dielectric cylinder of arbitrary

cross section cladded by a homogeneous medium. Along

such a structure, a time-harmonic electromagnetic field of

angular frequency w propagates with a propagation con-

stant /3 in the axial (z) direction.
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A. Vector Form

The propagation problem can be solved in the rigorous

vector form via the axial components of the fields Ez and

Hz, which are real quantities for guided modes and can be

represented respectively in summations of the Bessel func-

tions (or modified Bessel functions of the second kind)
multiplied by angular phase factors as

and

where E = Ez, H = (up o//3 )Hz, s = i (denoting the inter-

ior region) or e (denoting the exterior region),

Gj(r)= ~~(~), Gfi(r)= Kw(w), u= (k&l –~2)1/2r, w=

(P2 – k&e)l’2r, ko denotes the free-space propagation
constant, and a~, a;, b;, and b; are unknown complex

coefficients. Note that a pure imaginary number j is intro-

duced before b; in (2) to simplify the following discussion.

Once the axial components are obtained, other components

can be deduced from them directly. Among the transverse

components, those directed counterclockwise along the pe-

riphery of the cylinder can be given by

( G:’
+IJ: cosd T–jsin OF

m r )11
(3)
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Fig. 1. The

and

cross section of a homogeneous arbitrardy-shaped optical
fiber.

where G: = dJw( u)/dr, G:’ = dKM( w),\dr, an+ 8/an and

8/81 denote the derivatives in the i and 1 directions,

respectively. Explicitly

dial= – sin f3d/ih- +( C0s6/i-)a/ay

and

i7/i7n = C0S8d/& + (sint9/r) a/ao

where 9 denotes the angle between r and A (see Fig. 1).

If one terminates the infinite summations after kf terms

and forces the four kinds of tangential fields of the two

regions to be continuous at N ( = 2 M ) node points distrib-

uted around the periphery, one arrives at 4N simultaneous

real equations with unknown variables being the real and

the imaginary parts of a~, b;, a;, and b;. (Actually, due

to the term of sin(m+) with m = O, the imaginary parts of

a: and the real parts of b: are deleted and, accordingly,

one of the node points is deleted.) Then, the propagation

constants of guided modes can be determined by searching

the roots of the determinant of the resultant matrix.

However, at the cutoff condition ( q( = C, – B 2/k~) ~ O),
special consideration should be taken for the exterior trans-

verse fields since the vanishing denominators occur in (3)

and (4) and the expansion functions K~( w ) are singular

themselves. The singularity of Km at cutoff can be removed

by retaining only their relative magnitudes (for each order

of Km) among the node points; tha~t k, Km(w) is re-

cognized as r– m at cutoff.

The singularity due to the vanishing denominators can

be removed by noticing the behavior of the modified Bessel

functions with vanishing arguments. As q approaches zero

from a negative

and

K.(w)

where

[alue ‘

Kf(w)l W40=–1/r (5a)

m
._

— + qrQ., form>l (5b)
r

*+O

Qm = - k~ln(yEw/2), form=l

= k~/2(m –l), form>l

and YE( = 1.781. . . ) denotes Euler’s constant whose

numerical value will not be encountered in actual calcula-

tion. From (3)–(5), one can conclude the following: For

the transverse fields remaining finite in the exterior region,

it requires that

b~=a~+qfm, form>O (6)

and that a: and b: should vanish to the first order of q,

where fm are unknown complex quantities. Further, it is

noted that the quantity of (~/( ~/k. ) 2 in (4) can be

replaced by (1 + q/c J, as q approaches zero. Then we

obtain the representations of the exterior transverse fields

along the peripheral direction at cutoff as

– jk~

(

~J31(r,@) = Re –(a~sind+ jb~cos O)/(qr)

cc

+ x jKml(w)e–~m*
[

– fmzeJo + a~rQme-Jo 1}(7)
~=1 r

and

jk&p o

(

—H1(r,@)= Re –(afcosd– jbfsint9)/(qr)
P2

(8)

Using (7) and (8) to represent El and H, in the exterior

region and applying the relation of b; = afi (letting q = O

in (6)) to (2), one arrives at 4N simultaneous real equations

with unknown variables being the real and the imaginary

parts of a;, b;, a;, and ~~ (replacing notationally b:

with ~o), after the same point-matching procedure. Note

that since QI becomes infinite and af becomes zero

accordingly, the quantity of afQ1 is undetermined. In view

of this, we replace the to-be-solved unknown af with afQ1.

Similarly, we replace the unknowns a: and f. with a;/q

and f. /q, respectively. Thereafter, the cutoff frequencies
of guided modes are determined by searching the values of

V which render the determinant of the resultant matrix

vanishing, where V( = k. [~-(cl – (,)/m] 1/2) denotes the

normalized frequency and A denotes the cross-sectional

area. Through such a normalized quantity, cutoff frequen-

cies of guided modes are determined by knowing the ratio



SU : HOMOGENEOUS OPTICAL FIBER 1103

c, between c~ and c,( c. = f, /c ,), not necessarily by their

respective values.

B. Scalar Form

In the case of f, ~ 1, the transverse fields and their

gradients in any direction are continuous everywhere. Con-

sequently, the propagation problem can be solved via a

transverse field F in any (but fixed) direction of rectangu-

lar coordinates. This field and its derivative can be repre-

sented respectively by

(F(r,@) = Re ~ a:G:e-Jm+
}

(9)
~=()

and

dF(r,@)

( ( ‘1)

= Re ~ a~G~e-Jm+ ~
dr

(lo)
M=(J m

where the notations a;, G:, and G;’ are defined as before.

Similarly, by terminating the infinite summations after M

terms and forcing F and dF/dr to be continuous at

N( = 2i14) points distributed around the periphery, one

obtains 2 N simultaneous real equations with unknown

variables being the real and the imaginary parts of a~ and

a~. The resultant matrix can be used to find propagation

constants as well as cutoff frequencies of guided modes. In

the treatment of the cutoff frequency, the quantity of

K; /K. is taken as – m/r (letting q = O in (5)) and,

again, only the relative magnitudes of Km(w) are retained.

C. Symmetry

If the cross section of the guiding structure possesses

symmetry about some axis, there will be symmetry or

antisymmetry in the corresponding field patterns. It can be

shown that if E is symmetric about that axis, H will be

antisymmetric, and vice versa. Due to the opposite symme-

try between E and H, we refer to the symmetry types

hereafter with respect to E. If E is symmetric (antisymmet-

ric) about the x axis, the imaginary (real) parts of all the

unknown coefficients (a;, b;, and ~~) are zero and the
corresponding guided modes are referred to the symmetric

(antisymmetric) modes hereafter. If the symmetric mode is

further symmetric (antisymmetric) about the y axis or the

antisymmetric mode is antisymmetric (symmetric) about

the y axis, the summation index m in (l)-(4), (7), and (8)

will run on even (odd) numbers and the corresponding

modes are referred to the even (odd) modes. By exploiting

the symmetry properties, the number of unknown coeffi-

cients and the number of node points will be reduced. In

cases of two-fold symmetry, such as in elliptical or rectan-

gular waveguides, it suffices to match the fields in one

quaridrant of the periphery. In the scalar form, the al-

gorithm for symmetry is the same as that of the vector

form. However, the physical interpretation is different,

since the scalar form is formulated via a transverse field. It

can be shown that, for a structure with two-fold symmetry,

each scalar even (odd) mode is composed of two vectorial

odd (even) modes, one symmetric and one antisymmetric.

To avoid confusion, we refer to the scalar symmetry type

with respect to the corresponding symmetry in the vector

form.

1[11. PROCEDURE AND RESULT

In the following calculation, we consider the elliptical

and the rectangular waveguides which possess two-fold

symmetry, and whose boundaries can be described by a

superellipse [2]1 as

where y denotes the aspect ratio such that 2C and 2yC are,

respectively, the lengths of the minor and the major axes,

L = 1 corresponds to an ellipse, and L = m corresponds to

a rectangle.

In our calculation, it is found that the calculated results

depend on how the node points are chosen, especially when

the aspect ratio becomes large. The results presented here

correspond to those node points equiangularly distributed

around the periphery; namely, the azimuthal angle of node

point I is given by

w I–O.5
+( I)=Ty, 1=1,2.-N. (12)

.

For the even modes, where the summations include the

term of sin(m~) with m = O, two equations (one in (1) or

(2) and the other in (3) or (4), depending on the modes

being symmetric olr antisymmetric) corresponding to the

point of I = 1 were deleted.

In general, one has to solve a 4N X 4N matrix for the

vector form just as was done in [1]. However, some of the

computation can be saved if one first expresses explicitly

a ~ and b~ in terms of a: from (1) and (2), respectively (by

solving associated N X N matrices), and then substitutes

these explicit relations in (3) and (4). Thereafter, one

arrives at a 2 N X 2N matrix equation with unknowns

being a: and ~~. It can be shown that the total computa-

tion effort is about one-half that of solving a 4N x 4N

matrix equation directly. This time-saving procedure holds

for the calculation of propagation constants.

The calculated cutoff frequencies of both the vector and

the scalar forms are shown in Tables I and II for the

elliptical and rectangular waveguides, respectively, where

the modes designated by SE (AE) correspond to the sym-

metric (antisymmetric) even modes and those by SO (AO)

correspond to the symmetric (antisymmetric) odd modes.

The scalar data from [3] are also listed for comparison. It is

found that most of their data are higher than ours. By

further checking their data of circular waveguides, where

exact solutions are available, we conclude that the cutoff
data in [3] are not right at cutoff but just near it. Compar-

ing Tables I and II, it is found that, for the modes shown,

the cutoff frequencies of the elliptical waveguides are higher

than those of the rectangular waveguides with the same

aspect ratio and cross-sectional area.

Previously, it has been found that the elliptical [7] and



1104 IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. M~-33, NO. 11, NOVEMBER 1985

TABLE I

NORMALIZED CUTOFF FREQUENCY OF AN ELLIPTICAL WAVEGUIDE
. -

6, = 2.25 ~, = 1.0404

MOD E

:,-1

7=1.5 y=z Y=l .5 7=2 7=1.5 7=2

SE1 2.294 2.241 2.201 2.132
AE1 2.389 2.399 2.206 2.139

2.193 (2.23)* 2.084 (2.13)

SE2 2.976 3.233 2.696 2.954

AE2 2.896 3.090 2.692 2.947
2.686 (2.771 2.935 (2.98)

S02 3.408 3.127 3.355 3.126
AO z 3.483 3.300 3.360 3.135

3.351 (3.42) 3.104 [3.20)

S03 4.183 4.379 3.912 4.053
AO , 4.043 4.116 3.905 4.042

3.898 (3.89) 3.976 (4.091

J

S04 4.576 5.014 4.459 4.984

AO 4 4.646 5.126 4.462 4.988
4.457 (4.54) 4.982 (5.11)

*The parenthesized data m Tables I and II are taken from [3];
however, due to the different defimtlons of normalized frequency, they
are multiplied by a factor of rfi to conform our definition pertaining to
cross-sectional area.

TABLE II
NORMALIZED CUTOFF FREQUENCY OF A RECTANGULAR WAVEGUIDE

{r = 2.25 gr = 1.0404 c=— 1

MODE
7=1 7=1.5 7=2 y=l 7=1,5 7=2 y=l 7=1.5 7=2

[ Vector form]

SE1 2.097 2.026 1.988 2.143 1.953 1.857
AE ~ 2.176 2.094 2.096 2.146 1.953 1.860

2.137 1.929 ;“~~; (1.87)

SE2 2.592 2.754 2.987 2.173 2.443 2.715
AE2 2.327 2.519 2.745 2.161 2.436 2.705

2.137 2.408 ;:;:: (2.67)

S02 3.286 3.032 2.838 3.237 3.044 2.838
AO z 3.286 3.098 2.917 3.237 3.045 2.841

3.196 3.011 ;:~;~ (2.84)

S03 3.425 3.648 3.855 3.366 3.318 3.487
AO j 3.425 3.422 3.594 3.366 3.311 3.477

3.325 3.220 ;“;;; (3.42)

S04 3.925 4.219 4.702 3.682 4.157 4.705
AO a

3.671
4.706

3.925 4.330 4.823 3.682 4.160 4.710
4.128 ~,706 (4.80)

the rectangular [1] waveguides possess two fundamental

modes which are never cutoff; indeed, we find that of the

two lowest modes (the SOI and AOI modes), the cutoff

frequencies cannot be found, namely, their cutoff values

are both zero. The functional behavior of the cutoff fre-

quencies of elliptical waveguides as the aspect ratio y and

the permittivity ratio c, are varying as shown in Figs. 2 and

3, respectively. It is found that, except for the TE and TM

modes, each mode of a circular waveguide is split into two

different modes (one symmetric and one antisymmetric) as

the cross section becomes flatter. As to those elliptical

modes evolving from the circular TE or TM modes, since

their field patterns do not possess both symmetry and

antisymmetry (about the x axis), no such splitting is ob-

served; however, the degeneracy in the cutoff frequencies

of the circular TE and TM modes is removed in an

elliptical waveguide. Note that in the special case of the

circular waveguide, the solutions of the present method

correspond to the HE~l modes with azimuthal mode num-

ber m >1. For other circular modes, the cutoff frequencies

are determined in another way [8] (which is specific to the

circular waveguide), and one needs finer searching steps to

locate the cutoff frequencies of elliptical modes which

evolve from such circular modes, when y is close to 1.

From Fig. 2, one can also find that some of the cutoff

frequencies become higher and others become lower as the

cross section becomes flatter. Yeh conjectured [7] that the

cutoff frequencies of all modes (except the fundamental

modes) become higher for a flatter (but same area) ellipti-

cal waveguide. Apparently, his early conjecture is not

correct. However, his argument may be applied to wave-

guides of very large aspect ratios, in which case the por-

tions near the ends of the major axes are expected to

contribute little to the guiding mechanism. Fig. 3 illustrates

that the splitting due to a nonunit aspect ratio increases as

c. becomes larger, and vanishes again as c, approaches

unit y. Note that in the limit of c, ~ 1, the vectorial and

scalar solutions do not agree very well, which is ascribed to

the errors of calculation. For a smaller y, this disagreement

is seen to be smaller. The vanishing splitting as (, ~ 1 also

exists in the propagation constants above cutoff; this ex-

plains why Eyges et al. [3] failed to find two fundamental

modes by employing a scalar formulation.

In the above calculation, we choose N = 8 and use a

double precision. The aspect ratios are confined within 2.5;

for larger aspect ratios, N should be increased to obtain

satisfactory results. However, for such large aspect ratios,

the increase of N is found to bring forth numerical insta-

bility. This instability seems due to the extraneous large

variation of the numerical values of the Bessel or modified
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Fig. 2. Relations of norrnatized cutoff frequency ~, versus aspect ratio
y of an elliptical waveguide with (a) c,= 2.25 or (b) 1.0404. The
discrepancies between the cutoff frequencies of symmetric and antisym-
metric modes are too small to be shown in the drawing of (b).

Bessel functions among the node points when y and N

become large simultaneously.

IV. CONCLUSION

In this investigation, the boundary field-matching condi-

tions right at cutoff we originally derived; thereupon, the

vectorial method of circular-harmonic expansion is ex-

tended to treat the cutoff frequencies of homogeneous

optical fibers with arbitrary cross sections. This circular-

harmonic method is also extended to the scalar form,

where the cutoff frequencies can be obtained in a simpler

way.

From the calculated results, it is found that, except for

the fundamental mode and the TE and TM modes, each

mode of circular waveguide is split into two modes with

different cutoff frequencies as the waveguide becomes

elliptical. The dependence of cutoff frequency on the

cross-sectional geometry and the permittivit y ratio are il-

lustrated.

2.6

2.4

1~ ~~

AE,

Vc
SE

2.2

~scalar sol. r= 2

2.0
1 1.5 2

J-G’

Fig. 3. Relations of normalized cutoff frequency ~, versus permittivity
ratio c, for a symmetric and a corresponding antisymmetric modes of
an elliptical waveguidt.
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